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Introduction

These notes were written as part of a project Pares Ordenados from January 2023 to
May 2023 under the supervision of Juan Omar Gomez. The goal of the present work
is to give a survey of the very basics of Category Theory, which nowadays is a very
important tool in mathematics allowing us to compare different structures. We emphasize
in the Category of Modules and give an immediate application of this theory by doing
the Grothendieck Group. In chapters 1 and 2 we follow the reference [Lei14], [Alu21] and
[Awo10]. For chapter 3, the reference was [Bly18] and [RR09]. For chapter 4 [Ros12].

Acknowledgments. I thank Juan Omar Gomez because of his constant support and
for his direction.

1. Categories

We start by defining what a Category is and give plenty examples to illustrate the
concept. After this we see that there is a category in which objects are categories and
morphisms between objects are (what is known as) functors. We end this section with
natural transformations and equivalence of categories.

Definition 1.1. A category C consists of the following data.

• A collection of objects Ob(C).
• For every A,B ∈ Ob(C), a collection of morphisms HomC(A,B).
• For every A,B,C ∈ Ob(C), there exists a map

◦ : HomC(A,B)× HomC(B,C) → HomC(A,C).

such that the following two properties hold
• For every A ∈ Obj(C), there exists a distinguish morphism 1A ∈ HomC(A,A)
called the identity in A and it is such that for every f ∈ HomC(A,B),

1B ◦ f = f = f ◦ 1A.
Date: May 5, 2023.
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• For every f ∈ HomC(A,B), g ∈ HomC(B,C), h ∈ Hom(C,D) we have,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

From now on, a morphism from A to B will be sometimes denoted by f : A→ B.

Example 1.2. The following is a list of some well-known categories.
1. Set is the category whose objects are sets and the morphisms are functions. The

composition of morphisms is defined by the usual function composition.
2. Let k be a field. Thus Veck is the category whose objects are k-vector spaces and

the morphisms are linear transformations. The composition between two linear
transformations is given by the composition of the morphisms as functions of sets.

3. Grp is the category whose objects are groups and morphisms are group homo-
morphisms. Similarly one can define the category of rings Ring and the category
of topological spaces Top.

4. Let ≤ be a transitive and reflexive relation on the set S. We want to define
a category with this information. Define the objects of the category C as the
elements in S and HomC(a, b) = ∗ consists of a single element if a ≤ b and empty
otherwise. The composition of morphisms is given by the transitive property. If
the relation is given by a ≤ b if and only if a = b, then there are no non-trivial
morphisms. Such categories are called discrete.

5. Let X be a topological space. Consider the relation

y ≤ x if and only if x ∈ U ⇒ y ∈ U for every open U.

If X is T0, then this relation is a partial order (that is, a reflexive, anti-symmetric
and transitive relation). Therefore the poset1 (X,≤) determines a category (see
Example 4).

6. Ord is the category whose objects are pairs (S,≤) with ≤ a reflexive and tran-
sitive relation on the set S and morphisms are order-preserving functions. The
composition in this case is just the usual composition of functions between sets.
In a similar fashion, we define the category of posets which is denoted by Poset.

7. LetR be a ring. We define the category C as follows: Obj(C) = Z+ and HomC(n,m) =
Mn×m(R) and the composition between morphisms is given by matrix multiplica-
tion. The category C is usually denoted by MatR and it is known as the category
of matrices with entries in the ring R.

8. Let (G, ·) be a group. The category BG has only one object (say ⋆) and the
morpisms correpond to the elements of the group. The composition of morphisms
is given by the multiplication of the group. Explicitly, let g ∈ Hom(⋆, ⋆) and
h ∈ Hom(⋆, ⋆), then h ◦ g := h · g.

9. Let C be a category and let A be an object in C. Consider the category CA whose
objects are given by the morphisms Z → A in C, and morphisms between two
objects Z1 → A, Z2 → A are given by a morphisms φ ∈ HomC(Z1, Z2) such that
the following triangle is commutative.

Z1 Z2

A

φ

1Poset is short for partially ordered set.
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The composition is (as expected) defined by means of doing it in C, i.e, if we have
two morphisms ψ, φ

Z1 Z2

A

ψ
Z2 Z3

A

φ

then, their composition is φ ◦ ψ

Z1 Z3

A

φ ◦ψ

10. Now, given two objects A,B in C, define CA,B as the category in which objects are
diagrams

Z

A B

and a morphism between two objects

Z1

A B

Z2

A B

is a morphisms φ : Z1 → Z2 in C which makes the following diagram commutative.

Z1

Z2

A B

φ

The composition is induced by the composition in C.
11. Let C be a category and α ∈ HomC(A,C), β ∈ HomC(B,C). Let Cα,β denote the

category whose objects are commutative diagrams

A

Z C

B

α

β

and a morphism between two objects
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A

Z1 C

B

α

β

A

Z2 C

B

α

β

is an element φ ∈ HomC(Z1, Z2) such that the following diagram commutes.

A

Z1 Z2 C

B

α

φ

β

12. We finish this list of examples with a very geometric one. The following are called
n categories. They have n objects, the required
identity morphisms are omitted and the other morphisms are shown in the dia-

grams below.
– n=1

⋆

– n=2

⋆ ♦

– n=3

⋆ ♦

♣

– n=4

⋆ ♦

♠ ♣

– n=5

♦

♠ ⋆

♣ ■
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2. Functors and natural transformations

In this section we focus on functors, these corresponds to the morphisms in the category
of categories as we will see.

Convention: From now on we restrict our treatment to categories with the following
property. For any pair of objects a, b, the morphisms from a to b determine a set. This
categories are known as locally small categories.

Definition 2.1. Let C,D be categories. A (covariant) functor F : C → D from C to D
is a map sending objects of C to objects of D and morphisms of C to morphisms of D
preserving the structure of the category, i.e., it preserves domains, codomains, composition
and identities. Explicitly:

• F (A f−→ B) = FA
Ff−→ FB

• F (A f−→ B
g−→ C) = FA

Ff−→ FB
Fg−→ FC

• F (A 1A−→ A) = FA
1FA−−→ FA

If the first condition is changed for F (A
f−→ B) = FB

Ff−→ FA, then we say that F is a
contravariant functor.

Example 2.2. The following are some of the most straightforward examples of functors.

1. Let C be a category. and consider the functor 1C : C → C which maps every object
and every morphism to itself.

2. The endofunctor P : Set → Set which assigns every set its power set and maps
every function f : X → Y to the set function f : P(X) → P(Y ) defined by f(A ⊆
X) = f(A) ⊆ Y . In this example, by taking inverse image instead of direct image
we obtain a contravariant functor.

3. For categories with structure (groups, rings, modules, posets, etc.) one can con-
sider the functor which “forgets” the additional structure. For example, F1 : Poset →
Set, F2 : Ring → Set, F3 : Top → Set. There is also a functor that forgets only
a part of the structure, i.e., F : RMod → Ab.

4. Let C, D be categories and b ∈ Obj(D). Define the constant functor bC : C → D
by bC(X) = b and bC(f) = 1b for every object X and morphism f in C, respectively.

5. Let C be a category and A ∈ Obj(C). Then we have a functor HomC(A, ) : C →
Set which maps an object B in C to HomC(A,B) and maps a morphism B

f−→ C

to HomC(A,B)
f∗−→ HomC(A,C) which is given by f ∗(g) = f ◦ g. In particular,

these functors are of great interest for this project when C =R Mod.
6. The functor GLn(−) : Ring → Grp maps a ring R to its associated general linear

group GLn(R) and maps every ring homomorphism to the group homomorphism
obtained by applying the ring homomorphism component-wise to the matrices.

7. The functor (−)× : Ring → Group taking every ring and sending it to its group
of units.

8. The functor (−)op : C → C sending every object to itself and every morphism to
the same morphism but with the arrow pointing in the opposite direction.

9. The functor (−)∗ : Veck → Veck assigns to each vector space its dual vector space
and each linear transformation to its transpose, is contravariant.
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10. The functor Spec : CRing → Top sends every commutative ring R to SpecR the
set of all prime ideals of R with the Zariski Topology and every ring morphism

R1
f−→ R2 to SpecR2

f∗−→ SpecR1 defined by f ∗(p) = f−1(p).
11. In some categories one can think of free objects such as free groups, rings, mod-

ules,... so it makes sense to talk about a Free functor as the following examples
illustrate

i. Given a set S, there is the free group F (S) associated to S and every S
f−→ S ′

set function induces a group homomorphism F (S)
f∗−→ F (S ′) sending x =

ar11 a
r2
2 . . . a

rn
n ∈ F (S) to f ∗(x) = f(a1)

r1f(a2)
r2 . . . f(an)

rn .
ii. Similarly, construct the commutative free ring F (S) defined by polynomials in

Z with variables xs (s ∈ S). For example, if S = {x, y} then F (S) = Z[x, y].
iii. For every non-empty set and commutative ring R one can always construct

the free R−module on S which is essentially copies of R indexed by S, i.e.,⊕
s∈S Rs.

12. Define π1 : Top∗ → Group as the functor which assigns to every pointed space

(X, x0) its fundamental group π1(X,X0) and to every continuous function (X, x0)
f−→

(Y, y0) the group homomorphism π1(X, x0)
f∗−→ π1(Y, y0) sending every loop g based

in x0 to the loop f ◦ g based in y0.
13. Let BG be the monoid G viewed as a category (see Example 1.2.8). A functor

F : BG → Set
corresponds to the following information. A set S which is the image of the only

object of BG and for every g ∈ G a function Fg : S → S say Fg(s) = g · s and
is such that (g′g) · s = g′ · (g · s) and 1 · s = s. Then a functor from BG to Set
corresponds to a set S together with a left action of G, this is called a left G–set.
Similarly, a contravariant functor between these categories is a right G–set.

14. Let A,B be posets viewed as categories. A functor from A to B is an order-
preserving function.

15. Let n ∈ Z+. The map F : CRing → Mon sending a commutative ring R to
Mn(R) and every ring morphism f : R → S to f ∗ : Mn(R) → Mn(S) such that
f ∗(aij) = (f(a))ij, i.e, we change every entry of the matrix for its image by f .
This prescription defines a functor.

16. Let A be a category. A presheaf in A is a contravariant functor from A to Set.
Note that this is equivalent to specify a functor from the opposite category, i.e, a
presheaf is a functor from Aop to Set.

Now, consider functors F : A → B, G : B → C. We can define the composition H =
G ◦ F : A → C by HA = (G ◦ F )(A) and Hf = (G ◦ F )(f) for every object A and
morphism f in A, one can check that this defines a functor. From this observation it
is clear that we can form a category whose objects are categories and morphisms are
functors.

Definition 2.3. Two categories C and D are isomorphic if there exist functors F : C → D
and G : D → C such that F ◦G = 1D y G ◦ F = 1C.

Example 2.4. The category of abelian groups is isomorphic to the category of Z–modules.
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Definition 2.5. Let G,F : C → D be two functors. A natural transformation η : F ⇒ G
is a collection of maps {ηA : F (A) → G(A)}A∈C such that for every morphism f : A → B
the following diagram commutes

F (A)
ηA //

F (f)
��

G(A)

G(f)
��

F (B)
ηB // G(B)

A natural transformation between functors F,G will be sometimes written as follows

C D

F

G

α

Let F : C → D be a functor. Define 1F : F ⇒ F , where each (1F )A is the identity
morphism 1A. On the other hand, for two natural transformations η : F ⇒ G and η′ : G⇒
H, define the composition as (η′ ◦η)A := η′A ◦ηA so that we have a natural transformation
η′◦η : F ⇒ H. The definition above is known as the category functor from C to D denoted
by DC or [C,D]. Now we give some examples to illustrate what a natural transformation
is.

Example 2.6. Let A be a discrete category whose objects are positive integers, then a
functor F : A → B is essentially objects F1, F2, . . . , Fn, . . . so a natural transformation
α : F → G of two such functors is a collection of morphisms αi : Fi → Gi.

Example 2.7. Let n be a fixed natural number. We already know that Mn : CRing →
Mon define a functor. We can view every ring (R,+, ·) as a monoid (R, ·) and so we
also have a functor U : CRing → Mon. We want to prove that (detR : Mn(R) →
U(R))R∈CRing is a natural transformation, i.e,

CRing Mon

Mn

U

det

For this, let f : R → S be a ring morphism, then,

Mn(R) U(R)

Mn(S) U(S)

detR

detS

is a commutative diagram since f(detr(aij)) = detS(f(aij)).

We end this section with two important and useful definitions.

Definition 2.8. Let C and D be two categories, and F, G two functors from C to D. We
say F and G are natural isomorphic if they are isomorphic in the category [C,D].
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Definition 2.9. An equivalence of categories C and D consists of a pair of functors
F : C → D and G : D → C together with natural isomorphisms

η : 1C → G ◦ F, ε : F ◦G→ 1D.

3. Categories of Modules

In this section we present some basics of the category of modules which led to define the
Grothendieck group of a ring. In the following let R be a commutative ring with unity.

Definition 3.1. Let (Mi)i∈I a family of R–modules. By a product of this family we mean
a pair (P, (fi))i∈I where P is an R–module and fi : P →Mi are R–morphisms, such that
for any other pair (M, (gi)i∈I) there exists a unique R–morphism h from M to P making
the following diagram commutes

M

P Mi

gih

fi

If such product exists then it is unique up to isomorphism.

Proposition 3.2. If (Mi)i∈I is a family of R–modules then the cartesian product of this
family

∏
i∈I
Mi (viewed as an R–module with the operation and action component wise) is a

product of this family.

Similarly to the definition of a product, we define the dual notion, namely a coproduct.

Definition 3.3. Let (Mi)i∈I be a family of R–modules. By a coproduct of this family
we mean a pair (C, (fi))i∈I where C is an R–module and fi : Mi → C are R–morphisms,
such that for any other pair (M, (gi)i∈I) there exists a unique R–morphism h from C to
M making the following diagram commute

Mi M

C

fi

gi

h

If such coproduct exists, then it’s unique up to isomorphism.

Proposition 3.4. If (Mi)i∈I is a family of R–modules then the direct sum
⊕
i∈I
Mi is a

coproduct of this family.

Definition 3.5. If M, N are right and left R–modules respectively then by a tensor
product of these we mean a pair (T, f) where T is a Z–module and f : M × N → T is
a R-biadditive map, such that for any other pair (P, g) with g also R-biadditive, there
exists a unique Z–morphism h : P → T making the following diagram commute

M ×N P

T

f

g

h

If such a tensor product exists then it is unique up to isomorphism, and it is denoted by
M ⊗R N .
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LetM,N be right and left R–modules respectively. Consider F the free Z–module with
basis M ×N and let S be the subgroup generated by all elements of the following type,

• (a, b+ b′)− (a, b)− (a, b′)
• (a+ a′, b)− (a, b)− (a′, b)
• (ar, b)− (a, rb)

for every (a, b) ∈ M ×N and r ∈ R. Define M ⊗R N= F/S, h : M ×N →M ⊗R N by
h(a, b) = a⊗R b where a⊗R b = (a, b) + S.

Proposition 3.6. The Z–module M ⊗R N defined above is a tensor product of M,N .

Proposition 3.7. Let M,Ni be left R–modules and S a right R–module. Then, the tensor
product we have the following two properties:

• R⊗RM ∼= M
• S ⊗R

⊕
i∈I
Ni

∼=
⊕
i∈I

(S ⊗R Ni).

Theorem 3.8. Let R, S be commutative rings with 1, M an SR− bimodule and N a left
R−module. Then M ⊗R N is an S–module.

Definition 3.9. Let M be an R–module and ∅ ̸= X ⊆ M . Similar to vector spaces, we
say X is a basis for M if X is a linearly independent which generates M .

Definition 3.10. Let S be a non-empty set. A free R–module F over S is a pair (F, f)
where F is an R–module and f : S → F is a set function, satisfying that for every R–
module M and every set function g : S → M there exists an R–morphism h : F → M
such that the following diagram commutes

S M

F

f

g

h

Moreover, if (F, f) is free, then f is injective and imf is a basis for F .

Proposition 3.11. An R–module is free if and only if it has a basis.

Corollary 3.12. Every free R–module is isomorphic to a direct sum of copies of R.

More can be said, if S is a non-empty set and (F, f) is a free R–module over S, then F
has imf as a basis. Since f is injective, we have that S is in bijection with imf . Thus we
can consider S as a basis for F which is isomorphic to R–module

⊕
s∈S

Rs.

Proposition 3.13. Every R–module is a quotient of a free module.

Definition 3.14. A sequence of R–modules is a diagram

· · · Mi−1 Mi Mi+1 · · ·fi−1 fi

A sequence of R–modules is called exact at Mi if im fi−1 = ker fi. It is said to be exact
whenever it is exact for every Mi in the sequence.

Definition 3.15. An exact sequence N → P → 0 is right split if there exists α : P → N
making the following diagram commutative
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P

N P 0

idP
α

Similarly, an exact sequence 0 →M → N is left split if there exists β : N →M such that
the following diagram commutes

0 M N

M

idM
β

A short exact sequence 0 → M → N → P → 0 is said to split if it is left split and right
split.

Proposition 3.16. If 0 →M → N → P → 0 splits, then N ∼= M ⊕ P .

Definition 3.17. Let M be an R–module and N an R-submodule of M . We say N is
a retract of M if there is an R–morphism r : M → N such that the following diagram
commutes

M

N N

i r

idN

where i is the inclusion. Which means, N is retract if the inclusion splits on the left.

Definition 3.18. An R–module P is called projective if every diagram with exact row

P

A B 0

can be extended to a commutative diagram

P

A B 0.

Lemma 3.19. Let P be a projective module and N be a retract of P . Then N is projective.

Lemma 3.20. If M ⊆ P and M is a direct summand of P , then M is a retract of P .

Lemma 3.21. Every free module is projective.

Theorem 3.22. Let P be an R−module. The following properties are equivalent:

(i) P is projective.
(ii) HomR(P, ) is exact.
(iii) Every exact sequence M → P → 0 splits.
(iv) P is a direct summand of a free module.
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Definition 3.23. Let C be a category. A lifting problem is a commutative diagram

A X

B Y

f g

This problem has a solution if there is d : B → X such that the following diagram com-
mutes

A X

B Y

f gd

Fixing f, g we say f has the left lifting property with respect to g if every lifting problem
with vertical arrows f and g has a solution. In this case we also say g has the right lifting
property with respect to f and we write f ↗ g.

Remark 3.24. IfM is a colection of morphisms of a category C, we write f ↗M meaning
f ↗ m for every m ∈M . For example, if C = Set then mono ↗ epi.

We can rephrase the definition of a projective module making use of lifting properties as
follows

Definition 3.25. An R–module P is projective if (0 → P ) ↗ epi as the diagram illus-
trates

0 M

P N.

g

4. The Grothendieck group

In this section we study what is known as the Grothendieck construction which is used
later to introduce the Grothendieck group of a ring. For this purpose, we recall that one
can build the integers Z from the natural numbers N and the idea is that Z := N×N/ ∼
and N ⊆ Z, where the relation is defined as (m1, n1) ∼ (m2, n2) if and only if m1 + n2 =
m2+n1. Similarly for the rational numbers we have Q := Z×Z/ ∼ by applying the same
method but using the multiplication for the relation. In general, the question is whether
for every abelian monoid (M,+, 0) we can form a group G by doing the construction
explained before such that M ⊆ G; the answer is positive and corresponds precisely to
the Grothendieck construction.

Theorem 4.1. Let (M,+, 0) be an abelian monoid. Then there exists an abelian group
K(M) and a morphism of monoids iM : M → K(M) such that for every other abelian

group G and monoid morphism f : M → G there exists a unique group morphism f̂ : K(M) →
G making the following diagram commute

M G

K(M)

f

iM
f̂
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Proof. Consider the relation in M ×M given by (m1, n1) ∼ (m2, n2) if and only if there
is u ∈ M such that m1 + n2 + u = m2 + n1 + u. We claim that this is an equivalence
relation:

• Reflexive : Since m+ n+ 0 = m+ n+ 0 then (m,n) ∼ (m,n).
• Symmetric : Let (m1, n1) ∼ (m2, n2) then m1 + n2 + u = m2 + n1 + u which is
the same as m2 + n1 + u = m1 + n2 + u, hence (m2, n2) ∼ (m1, n1).

• Transitive : Let (m1, n1) ∼ (m2, n2) ∼ (m3, n3), then we have the two equations
m1+n2+u = m2+n1+u and m2+n3+v = m3+n2+v. Adding those and letting
w = m2+n2+u+v we have m1+n3+w = m3+n1+w, hence (m1, n1) ∼ (m3, n3).

Now, let K(M) = M ×M/ ∼, the elements of this set will be written [m,n] instead of
[(m,n)]. Define in K(M) an operation by

[m1, n1] + [m2, n2] = [m1 +m2, n1 + n2]

it is well defined since given (m1, n1) ∼ (m′
1, n

′
1) and (m2, n2) ∼ (m′

2, n
′
2) we have the

equations m1 + n′
1 + u = m′

1 + n1 + u and m2 + n′
2 + v = m′

2 + n2 + v, letting w = u+ v
we get the equation (m1 +m2) + (n′

1 + n′
2) + w = (m′

1 +m′
2) + (n1 + n2) + w by adding

the two above. Hence [m1 +m2, n1 + n2] = [m′
1 +m′

2, n
′
1 + n′

2]. Moreover, this operation
satisfies the following properties:

• Associative/Abelian : It follows since the sum of classes is the class of the sum
in the monoid which is associative and commutative.

• Identity : Let [m,n], [k, k] ∈ K(M) then [m,n] + [k, k] = [m + k, n + k] = [m,n]
and similarly [k, k] + [m,n] = [k +m,n + k] = [m,n]. Then there is an identity
element in K(M) given by [k, k] for every k ∈M .

• Inverses : Let [m,n] ∈ K(M) then [m,n] + [n,m] = [m+ n,m+ n] implies [n,m]
is the additive inverse of [m,n].

We conclude that K(M) is an abelian group with this operation. Now, if iM : M →
K(M) is defined by iM(m) = [m, 0], then iM(0) = [0, 0] and iM(m + n) = [m + n, 0] =
[m, 0] + [n, 0] = iM(m) + iM(n). In particular, iM is a morphism of monoids.

Finally, if f : M → G is a monoid morphism and G is a group, then we need f̂ : K(M) →
G group morphism such that f̂ ◦ iM = f . Define f̂([m,n]) = f(m)− f(n). If (m1, n1) ∼
(m2, n2), then we have an equation m1 + n2 + u = m2 + n1 + u, and by applying f , we
obtain f(m1) + f(n2) + f(u) = f(m2) + f(n1) + f(u) which is equal to f(m1)− f(n1) =

f(m2)− f(n2). Therefore f̂([m1, n1]) = f̂([m2, n2]). Now we shall prove that f̂ is indeed
a group morphism. This follows from

f̂([m1, n1] + [m2, n2]) = f̂([m1 +m2, n1 + n2])

= f(m1 +m2)− f(n1 + n2)

= f(m1) + f(m2)− f(n1)− f(n2)

= (f(m1)− f(n1)) + (f(m2)− f(n2))

= f̂([m1, n1]) + f̂([m2, n2])

□

Remark 4.2. In the construction presented above we did not assume that M has the
cancellative property. In fact, one has the property that iM is inyective if and only if M
is cancellative.
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Definition 4.3. Let R be a commutative ring. We define the Grothendieck group of the
ring R as K0(R) = K((Proj R,⊕)) where Proj R is the set of finitely generated projective
left R–modules.

Now, we shall prove that with this definition, K0 is a functor from the category of
commutative ringsCRing to the category of abelian groupsAb. For the sake of generality,
we first prove that the Grothendieck construction of a monoid is a functorial. Thus
K0 = K ◦ Proj is a functor, since it is a composition of functors.

Ring AbMon

Ab
K0

Proj

K

Consider the functor K which assigns to every abelian monoid M its Grothendieck
construction K(M) and to every morphism f : M → N the morphism iN ◦ f : K(M) →
K(N) given by in ◦ f([m,n]) = [f(m), f(n)]. Then, if M1

g−→ M2
f−→ M3 we have to verify

the equality iM3 ◦ f ◦ iM2 ◦ g = iM3 ◦ (f ◦ g),

• iM3 ◦ (f ◦ g)([m,n]) = [f(g(m)), f(g(n))].

• (iM3 ◦ f ◦ iM2 ◦ g)([m,n]) = iM3 ◦ f([g(m), g(n)]) = [f(g(m), f(g(n))].

Moreover, if M
1M−−→M then iM ◦ 1M([m,n]) = [1M(m), 1M(n)] = [m,n] = 1K(M)([m,n]).

Now, define the functor Proj which sends every commutative ring R to the monoid
(Proj R,⊕) and every ring morphism f : R → S to the monoid morphism f ∗ : Proj R →
Proj S given by the prescription f ∗(P ) = S ⊗R P . Let’s see that in fact this tensor
product is in Proj S. Since P is projective then P ⊕Q ∼= Rn implies (S⊗P )⊕ (S⊗Q) =
S ⊗ (P ⊕Q) ∼= S ⊗R R

n ∼= Sn, we conclude S ⊗ P is a direct summand of a free module
then projective. The functor properties are shown below

• Let R
g−→ S

f−→ T be ring morphisms, then (f ◦g)∗(M) = T⊗RM ∼= T⊗SS⊗RM =
f ∗(S ⊗RM) = (f ∗ ◦ g∗)(M).

• (1R)
∗(M) = R⊗RM ∼= M = 1Proj R(M).

• Let f : R → S then f ∗(0) = 0 and f ∗(M ⊕ N) = S ⊗R (M ⊕ N) = (S ⊗R M) ⊕
(S ⊗N) = f ∗(M)⊕ f ∗(N). This means, f ∗ is in fact a monoid morphism.

We finish this document with some examples of the Grothendieck group of certain rings.

Example 4.4. If R = F is a field then every finitely generated projective F–module is
simply a finite dimensional vector space and the dimension is well-defined. Moreover, they
are classified by its dimension. It follows that Proj F ∼= N as monoids. Since K0 is a
functor, it preserves isomorphisms, then K0(F ) ∼= K0(N) = Z.

Example 4.5. Let R be a PID. LetM be a finitely generated projective R–module. Since
M is projective then it is a direct summand of a free module, so M is embedded in Rn

for some n ∈ Z+. We want to prove M is free, that is M ∼= Rk for some k ∈ Z+. By
induction on n. If n = 1,

then M ∼= R. Suppose that the result holds for every integer less than n. Let π : Rm →
R denote the projection to the last component. Since M can be regarded as a subset of
Rn, then we have the following two cases:
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• π(M) = 0. Then M ⊆ kerπ ≤ Rn−1. By the inductive hypothesis we conclude
that M ∼= Rk for some k ≤ n− 1 < n.

• π(M) ̸= 0. In this case we can consider π(M) as an ideal of R. Since we are
in a PID, it follows that π(M) is principal, and hence projective. Consider the
following exact sequence where iM and i are the natural inclusions,

0 → ker(π ◦ iM)
i−→M

π◦iM−−−→ π(M) → 0

it splits since π(M) is projective, so M = π(M) ⊕ ker(π ◦ iM), we know the
second direct summand is embedded into Rn−1 so by the inductive hypothesis it is
isomorphic to some Rk with k ≤ n− 1. Hence M ∼= Rk ⊕ π(M) ∼= Rk ⊕R ∼= Rk+1

with k + 1 ≤ n.

Therefore M ∼= Rk for some k. Suppose that M ∼= Rk ∼= Rm. Let F = Frac(R). Then
F ⊗RM ∼= F ⊗R R

k ∼= F k. On the other hand, we have that F ⊗RM ∼= F ⊗R R
m ∼= Fm.

Since vector spaces are determined, up to isomorphism, by their dimension, we deduce
that k = m. It follows that k is unique. We conclude K0(R) ∼= Z
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